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Motivation | Earth vs Venus
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➢ The Twin Planet of Earth
○ Similar size, mass, bulk composition, 

internal structure and gravity

➢ Different interior dynamics
○ No plate tectonics

○ Resurfacing 

■ Upwelling mental result in volcanism

(Nimmo and McKenzie, 1998)

Motivation | Earth vs Venus



Motivation | Venus Surface
➢ Basaltic crust

➢ Active volcanism reflecting interior dynamics

○ "Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity" (Campbell et al., 2017)

○ "Present-day volcanism on Venus as evidenced from weathering rates of olivine" (Filiberto, 2020)
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Motivation | Coronae
➢  Large, circular to elongated tectonics structures 

○ Diameter ranges from 60 ~ 1000km
➢ Various morphologies & shapes

8
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Gülcher et al., 2021

Smrekar and Stofan, 1997
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Motivation | Coronae
➢ Coronae might be the key to understanding Venus’ tectonics and surface evolution

Tonatzin Coronae, located at [-53°, 164°], 
an example of asymmetrical coronae

Aramaiti Coronae, located at [-26°, 82°], 
an example of asymmetrical coronae
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Motivation | Coronae Formation
Previous researches show strong correlation between coronae 
asymmetry & its local topography and geodynamics 
(Gülcher et al., 2021; Stadler D et al., 2019.)
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The four geodynamic regimes identified in numerical models. "Corona structures driven by 
plume–lithosphere interactions and evidence for ongoing plume activity on Venus" (Gülcher et 
al., 2021)

2D &  3D topography plots of crustal heterogeneous model. 
"The origin of asymmetrical coronae on Venus: insights from 
3D thermomechanical Modelling" by Stadler D et al., 2019.
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Research Questions

1. What are the common geological features observed among asymmetry coronae?

→ Perform coronae data analysis

2. What is the geodynamics of asymmetry coronae formation?

3. What factors control the degree of coronae asymmetry?

→ Numerical Modeling Experiments
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Part 1: Coronae Data Analysis
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Quick Outline for  Coronae Data Analysis
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1. Methods

○ Coronae Data Analysis
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○ Coronae Global Distribution



Methods | Coronae Data Analysis

Finding coronae's common geological feature:

○ Utilizing coronae data from the coronae databases[1~ 4] 

(mainly from USGS)

■ Total of ~130 coronae

○ Investigated the factors that affect coronae's 

asymmetry: 

■ Local topography 

■ Locations (relative to other tectonic structures)

1. Lang, N.P. and López, I. (2015). The magmatic evolution of three Venusian coronae. From: Platz, T., Massironi, M., Byrne, P. K. & Hiesinger, H. (eds) 2015. Volcanism and Tectonism across the Inner Solar System.  Geological Society London, Special 
Publications, 401, 77-95. 

2. Smrekar, S. E., & Stofan, E. R. (1999). Origin of Corona-Dominated Topographic Rises on Venus. Icarus, 139(1), 100115. https://doi.org/10.1006/icar.1999.6090 
3. USGS Astrogeologicy Science Centre, Gazeteer for Planetary Nomenclature https://planetarynames.wr.usgs.gov/SearchResults?target=VENUS&featureType=Corona,%20coronae   
4. Gülcher, A. J., Gerya, T. V., Montési, L. G., & Munch, J. (2021). Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nature Geoscience, 13(8), 547-554.

Example of a coronae topography plot. Aramaiti Coronae 
located at [-26°, 82°], an example of asymmetrical 
coronae
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Results | Coronae Classification

Six Categories of Coronae:

➢ A) Symmetric

➢ Asymmetric

○ B) Margin

○ C) Intrinsic

○ D) Angular

○ E) Cluster

○ F) Elongated

Examples of a coronae topography plot from each category 20



Results | Coronae Classification
A) Symmetrical Coronae: Coronae with circular, symmetrical shape

Aramaiti Coronae, located at [-26°, 82°], 
an example of asymmetrical coronae

Shiwanokia Coronae, located at [-42°, 80°], 
an example of asymmetrical coronae 21



Results | Coronae Classification
B) Margin Coronae: Asymmetrical coronae attached to a plate with higher topography

Eve Coronae, located at [-32°, 0.2°], an 
example of margin coronae

May-Enensi Coronae, located at [-42°, 68°], an 
example of margin coronae

22
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Results | Coronae Classification

C) Intrinsic Coronae: Asymmetrical coronae located on a plate with uniform topography

(Indicating the asymmetry is intrinsically caused during coronae formation)

Beyla Coronae, located at [-26°, 15°], an 
example of intrinsic coronae.

Ereshkigal Coronae, located at [21°, 84°], 
an example of intrinsic coronae.
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Results | Coronae Classification
D) Angular Coronae: Asymmetrical coronae in angular shapes such as triangles, quadrangles, 

    or any shape with a sharp angled rim

Marzyana Coronae, located at [-53°, 67°], 
an example of angular coronae.

Nefertiti Coronae, located at [36°, 48°], an 
example of angular coronae.

26



Results | Coronae Classification
E) Cluster Coronae: Multiple Asymmetrical coronae clustering in the same region

Obiemi Coronae, located at [-32°, -83°], an 
example of angular coronae.

Rzhanitsa Coronae, located at [-18°, -145°], 
an example of angular coronae. 27



Results | Coronae Classification
F) Elongated Coronae: Asymmetrical coronae in elliptical, elongated shape

Ceres Coronae, located at [-16°, 151°], an 
example of angular coronae.

Oanuavae Coronae, located at [-32°, -104°], 
an example of angular coronae. 28



Results | Coronae Global Distribution

(A) Global distribution of coronae identified as symmetric or 
asymmetric subclasses plotted on the global topography relative to 
6051.877 km (Sandwell, 2015; Gülcher, 2020) 

(B) Global distribution of coronae identified as symmetric or 
asymmetric subclasses plotted on the Venus crustal thickness 
(Weiczorek, 2015).

(A) (B) 
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* Plotting tool: PyGMT
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➢ Most coronae are located at where topography drastically change



Part 2: Numerical Modeling
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Part 2: Numerical Modeling

3D View with composition of initial set-up for the reference model. (Fig. 2 from the Bachelor Thesis "The origin of asymmetrical coronae on Venus: insights from 
3D thermomechanical Modelling" by Stadler D et al., 2019. ) 32



Quick Outline for  Numerical Modeling
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1. Methods

○ I3ELVIS 

○ Model Setup

2. Results

○ Geodynamics Regime

○ Observational evidence of asymmetric coronae formation from 

each variation



Methods | I3ELVIS (Gerya, 2010)

➢ Computer language C
➢ Finite-difference method
➢ Marker-in-cell techniques
➢ Using staggered Eulerian grid to obtain a velocity field
➢ Solving mass, momentum, and energy conservation equations
➢ Adapted to Venusian conditions while accounting for 

○ Visco-plastic rheologies
○ Magmatic weakening of crustal material 
○ Melting
○ Relevant phase changes (i.e. eclogitization) 

See Gülcher et al. (2021) for details
34



Methods | I3ELVIS model setup

➢ Box dimension: 1620x392x1620km

➢ Resolution: 4x2x4km

➢ A spherical mantle plume

○ 90km diameter 

○ 230km below the surface

3D View with composition of initial set-up for the reference model. (Fig. 2 
from the Bachelor Thesis "The origin of asymmetrical coronae on Venus: 
insights from 3D thermomechanical Modelling" by Stadler D et al., 2019. )

35(using the exact same model as Stadler D. et al., 2019)



Methods | Numerical Modeling

18 Numerical Models varying:

➢ Crustal thickness heterogeneity
○ Plateau: 40, 33, 27 km

➢ Transition width
○ 100, 200, 300 km

➢ Thermal heterogeneity
○ ON / OFF

Transition width
Lowland

(fixed: 20km) Plateau

The front section of the 3D model box. All numerical models are two plate with different crustal 
thickness connected by a transition zone as shown in the image.

36
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Method | Thermal heterogeneity
What is Thermal Heterogeneity:

➢ Different thermal profiles are taken from 
different places in x-direction
(Stadler D et al., 2019. ) 

Transition 
Lowland

(fixed: 20km) Plateau

x

z

z

Thermal prole through the model lth2040m. (Fig. 3 from the Bachelor Thesis 
"The origin of asymmetrical coronae on Venus: insights from 3D 
thermomechanical Modelling" by Stadler D et al., 2019. )
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Results | Geodynamics Regime
1. Dripping Regime: All Thermal Heterogeneous models

*Model specs: Thermal heterogeneous model, 40km thick plateau, 200km transition
38

0.50 Myr 0.57 Myr 0.70 Myr 0.74 Myr

Crustal materials 
accumulate into a "drip" Drip fall off into mantle Repeat the previous dripping sequence
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Results | Geodynamics Regime
2. Subduction Regime: Models ONLY with crustal thickness heterogeneity

*No thermal heterogeneity, 33km plateau & 100km transition
40

1.93 Myr 2.12 Myr 2.16 Myr

A subducted slab is formed Lithospheric materials 
accumulate more Slab falls into mantle



Results | Geodynamics Regime
2. Subduction Regime: Models ONLY with crustal thickness heterogeneity

*No thermal heterogeneity, 33km plateau & 100km transition
41
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Results | Geodynamics Regime
3. Combination of regimes: Models with 40km plateau and transition width of 200 or 300 km 

*Model specs: No thermal heterogeneity, 40km plateau and 200km transition 42

0.59 Myr 0.64 Myr 12.3 Myr 23.3 Myr

Subduction RegimeDripping Regime



Results | Thermal heterogeneity

What is Thermal Heterogeneity:

➢ Different thermal profiles are taken from different 
places in x-direction 

{ lowland, center(transition), highland(plateau) }

Transition width
Lowland

(fixed: 20km) Plateau

x

z

z

Thermal prole through the model lth2040m. (Fig. 3 from the Bachelor Thesis 
"The origin of asymmetrical coronae on Venus: insights from 3D 
thermomechanical Modelling" by Stadler D et al., 2019. ) 43



* Both model have 40km plateau thickness & Transition Length 100km 
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Without Thermal Heterogeneity With Thermal Heterogeneity



* Both model have 40km plateau thickness & Transition Length 200km 
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Without Thermal Heterogeneity With Thermal Heterogeneity



* Both model have 40km plateau thickness & Transition Length 200km 
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Without Thermal Heterogeneity With Thermal Heterogeneity

Thermal Heterogeneity is the primary factor affecting asymmetry
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Results | Crustal Thicknesses Heterogeneity
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All 6 models 
are thermal 
heterogeneous
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Results | Crustal Thicknesses Heterogeneity
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1. Crustal thickness difference ↑

     → Asymmetry ↑

2. Thickness difference affect 

    coronae formation speed



Results | Transition Section dimensions 
1. Larger transition section → less gradient in crustal thickness → less asymmetric 

2. All models are thermal heterogeneous models
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Conclusions
➢ From Coronae Data Analysis

○ Asymmetry coronae are more likely located at places where there are local variations in crustal 
thickness 

➢ From Numerical Models
○ Geodynamics Regime:

■ Plateau-sided dripping regime  (thermal heterogeneity models)
■ Lowland-sided subduction regime  (models with only crustal heterogeneity)
■ Alternating from dripping to subduction regime 

(models with 40km plateau and a transition length > 100km)

○ Parameters of Variation:
■ Dominating factor: Thermal Heterogeneity
■ Larger gradient in thickness (buoyancy affects)  induces greater asymmetry
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Future Outlook
➢ Quantify the results of numerical modelings with the gradient of crustal thickness

➢ 3D composition visualization of models

➢ Investigate the relationship between asymmetric shape and stage of coronae 

formation
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