The Origin of Asymmetrical Coronae on Venus:

Insights from topography data and 3D thermomechanical modelling

Rosen (Ting-Ying) Yu¹, Anna Gülcher², Taras Gerya²

1 School of Electrical & Computer Engineering, Georgia Institute of Technology, GA, USA 2 Institute of Geophysics, Department of Earth Sciences, ETH Zürich, Switzerland

*Contact: tyu304@gatech.edu

in www.linkedin.com/in/rosen-tina-vina-vu-205926191

Talk Outline

- 1. Introduction
 - Venus and coronae structure
- 2. Research Methods and Results
 - Part 1: Coronae classification
 - Part 2: Numerical Modeling
- 3. Conclusion

Venus and coronae structure

Quick Outline for Venus and coronae structure

- 1. Motivation
 - Earth vs Venus
 - Coronae
- 2. Research Question

Motivation | Earth vs Venus

The Interior of Venus

Motivation | Earth vs Venus

The Twin Planet of Earth

- Similar size, mass, bulk composition, internal structure and gravity
- Different interior dynamics
 - No plate tectonics
 - Resurfacing
 - Upwelling mental result in volcanism (Nimmo and McKenzie, 1998)

The Interior of Venus

Motivation | Venus Surface

- Basaltic crust
- Active volcanism reflecting interior dynamics
 - "Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity" (Campbell et al., 2017)
 - "Present-day volcanism on Venus as evidenced from weathering rates of olivine" (Filiberto, 2020)

- Large, circular to elongated tectonics structures
 - Diameter ranges from 60 ~ 1000km
- Various morphologies & shapes

- Large, circular to elongated tectonics structures
 - Diameter ranges from 60 ~ 1000km
- Various morphologies & shapes

Gülcher et al., 2021

Smrekar and Stofan, 1997

Topographic profile	Description	% of coronae
	Dome	10
	Plateau	10
	Rim surroundig interior high	21
	Rim surrounding interior dome	
	Rim surrounding depression	25
$\sim \sim \sim$	Outer rise, trough, rim inner high	' 5
$\sim \sim \sim$	Outer rise, trough, rim inner low	, 1
$\frown\frown$	Rim only	7
	Depression	7
	No discernible signature	14

- Large, circular to elongated tectonics structures
 - Diameter ranges from 60 ~ 1000km
- Various morphologies & shapes

Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus

T.V. Gerya 🖾

Coronae formation on Venus via extension and lithospheric instability

Danielle Piskorz 🔀, Linda T. Elkins-Tanton, Suzanne E. Smrekar

Article | Published: 20 July 2020

Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus

Anna J. P. Gülcher 🖂, Taras V. Gerya, Laurent G. J. Montési & Jessica Munch

- Large, circular to elongated tectonics structures
 - Diameter ranges from 60 ~ 1000km
- Various morphologies & shapes

Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus

T.V. Gerya 🖾

Coronae formation on Venus via extension and lithospheric instability

Danielle Piskorz 🔀, Linda T. Elkins-Tanton, Suzanne E. Smrekar

Article | Published: 20 July 2020

Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus

Anna J. P. Gülcher 🖂, Taras V. Gerya, Laurent G. J. Montési & Jessica Munch

500km

> Coronae might be the key to **understanding Venus' tectonics** and surface evolution

Aramaiti Coronae, located at [-26°, 82°], an example of asymmetrical coronae

Tonatzin Coronae, located at [-53°, 164°], an example of asymmetrical coronae

Motivation | Coronae Formation

Previous researches show strong correlation between **coronae asymmetry** & its **local topography** and **geodynamics**

(Gülcher et al., 2021; Stadler D et al., 2019.)

C Embedded plume

d Plume underplating

The four geodynamic regimes identified in numerical models. "Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus" (Gülcher et al., 2021)

2D & 3D topography plots of crustal heterogeneous model. "The origin of asymmetrical coronae on Venus: insights from 3D thermomechanical Modelling" by Stadler D et al., 2019.

Motivation | Coronae Formation

Article Published: 20 July 2020

Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus

Anna J. P. Gülcher 🖾, Taras V. Gerya, Laurent G. J. Montési & Jessica Munch

BACHELOR THESIS

The origin of asymmetrical coronae on Venus: insights from 3D thermomechanical modelling

Research Questions

1. What are the **common geological features** observed among asymmetry coronae?

 \rightarrow Perform coronae data analysis

- 2. What is the **geodynamics** of asymmetry coronae formation?
- 3. What factors control the **degree of coronae asymmetry**?

→ Numerical Modeling Experiments

Part 1: Coronae Data Analysis

Quick Outline for Coronae Data Analysis

- 1. Methods
 - Coronae Data Analysis
- 2. Results
 - Coronae Classification
 - Coronae Global Distribution

Methods Coronae Data Analysis

Finding coronae's common geological feature:

- Utilizing coronae data from the coronae databases[1~ 4] (mainly from USGS)
 - Total of ~130 coronae
- Investigated the factors that affect coronae's asymmetry:
 - Local topography
 - Locations (relative to other tectonic structures)

Example of a coronae topography plot. Aramaiti Coronae located at [-26°, 82°], an example of asymmetrical coronae

1. Lang, N.P. and López, I. (2015). The magmatic evolution of three Venusian coronae. From: Platz, T., Massironi, M., Byrne, P. K. & Hiesinger, H. (eds) 2015. Volcanism and Tectonism across the Inner Solar System. Geological Society London, Special Publications, 401, 77-95.

4. Gülcher, A. J., Gerya, T. V., Montési, L. G., & Munch, J. (2021). Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nature Geoscience, 13(8), 547-554.

^{2.} Smrekar, S. E., & Stofan, E. R. (1999). Origin of Corona-Dominated Topographic Rises on Venus. Icarus, 139(1), 100115. https://doi.org/10.1006/icar.1999.6090

^{3.} USGS Astrogeologicy Science Centre, Gazeteer for Planetary Nomenclature https://planetarynames.wr.usgs.gov/SearchResults?target=VENUS&featureType=Corona,%20coronae

Six Categories of Coronae:

- > A) Symmetric
- > Asymmetric
 - o B) Margin
 - C) Intrinsic
 - o D) Angular
 - E) Cluster
 - F) Elongated

A) Symmetrical Coronae: Coronae with circular, symmetrical shape

Aramaiti Coronae, located at [-26°, 82°], an example of asymmetrical coronae

Shiwanokia Coronae, located at [-42°, 80°], an example of asymmetrical coronae

B) Margin Coronae: Asymmetrical coronae attached to a plate with higher topography

Eve Coronae, located at [-32°, 0.2°], an example of margin coronae

May-Enensi Coronae, located at [-42°, 68°], an example of margin coronae

-18

-19

-20"

-21

-22

-23

1.0

B) Margin Coronae: Asymmetrical coronae attached to a plate with higher topography

-16"

Eve Coronae, located at [-32°, 0.2°], an example of margin coronae

May-Enensi Coronae, located at [-42°, 68°], an example of margin coronae

-18

-19

C) Intrinsic Coronae: Asymmetrical coronae located on a plate with uniform topography

(Indicating the asymmetry is intrinsically caused during coronae formation)

Ereshkigal Coronae, located at [21°, 84°], an example of intrinsic coronae.

C) Intrinsic Coronae: Asymmetrical coronae located on a plate with uniform topography

(Indicating the asymmetry is intrinsically caused during coronae formation)

Beyla Coronae, located at [-26°, 15°], an example of intrinsic coronae.

Ereshkigal Coronae, located at [21°, 84°], an example of intrinsic coronae.

D) Angular Coronae: Asymmetrical coronae in angular shapes such as triangles, quadrangles,

or any shape with a sharp angled rim

Marzyana Coronae, located at [-53°, 67°], an example of angular coronae.

Nefertiti Coronae, located at [36°, 48°], an example of angular coronae.

E) Cluster Coronae: Multiple Asymmetrical coronae clustering in the same region

Rzhanitsa Coronae, located at [-18°, -145°], an example of angular coronae.

F) Elongated Coronae: Asymmetrical coronae in elliptical, elongated shape

Ceres Coronae, located at [-16°, 151°], an example of angular coronae.

Oanuavae Coronae, located at [-32°, -104°], an example of angular coronae.

Results | Coronae Global Distribution

* Plotting tool: PyGMT

(A) Global distribution of coronae identified as symmetric or asymmetric subclasses plotted on **the global topography** relative to 6051.877 km (Sandwell, 2015; Gülcher, 2020)

(B) Global distribution of coronae identified as symmetric or asymmetric subclasses plotted on **the Venus crustal thickness** (Weiczorek, 2015).

29

> Most coronae are located at where topography drastically change

Part 2: Numerical Modeling

Part 2: Numerical Modeling

3D View with composition of initial set-up for the reference model. (Fig. 2 from the Bachelor Thesis "The origin of asymmetrical coronae on Venus: insights from 3D thermomechanical Modelling" by Stadler D et al., 2019.)

Quick Outline for Numerical Modeling

- 1. Methods
 - I3ELVIS
 - Model Setup
- 2. Results
 - Geodynamics Regime
 - Observational evidence of asymmetric coronae formation from each variation

Methods I3ELVIS (Gerya, 2010)

- Computer language C
- Finite-difference method
- Marker-in-cell techniques
- Using staggered Eulerian grid to obtain a velocity field
- Solving mass, momentum, and energy conservation equations
- > Adapted to Venusian conditions while accounting for
 - Visco-plastic rheologies
 - Magmatic weakening of crustal material
 - Melting
 - Relevant phase changes (i.e. eclogitization)

Methods | I3ELVIS model setup

- Box dimension: 1620x392x1620km
- Resolution: 4x2x4km
- A spherical mantle plume
 - 90km diameter
 - 230km below the surface

3D View with composition of initial set-up for the reference model. (Fig. 2 from the Bachelor Thesis "The origin of asymmetrical coronae on Venus: insights from 3D thermomechanical Modelling" by Stadler D et al., 2019.)

(using the exact same model as Stadler D. et al., 2019)

Methods Numerical Modeling

18 Numerical Models varying:

- Crustal thickness heterogeneity
 - Plateau: 40, 33, 27 km
- Transition width
 - 100, 200, 300 km
- > Thermal heterogeneity
 - ON / OFF

The front section of the 3D model box. All numerical models are two plate with different crustal thickness connected by a transition zone as shown in the image.

Method | Thermal heterogeneity

What is Thermal Heterogeneity:

Different thermal profiles are taken from different places in x-direction (Stadler D et al., 2019.)

Thermal prole through the model lth2040m. (Fig. 3 from the *Bachelor Thesis* "*The origin of asymmetrical coronae on Venus: insights from 3D thermomechanical Modelling*" by Stadler D et al., 2019.)

solid/molten Air Basalt (upper crust) Gabbro (lower crust) Newly formed crust Lithospheric mantle Asthenospheric mantle Mantle plume

1. Dripping Regime: All Thermal Heterogeneous models

*Model specs: Thermal heterogeneous model, 40km thick plateau, 200km transition

solid/molten Air Basalt (upper crust) Gabbro (lower crust) Newly formed crust Lithospheric mantle Asthenospheric mantle Mantle plume

1. Dripping Regime: All Thermal Heterogeneous models

*Model specs: Thermal heterogeneous model, 40km thick plateau, 200km transition

2. Subduction Regime: Models ONLY with crustal thickness heterogeneity

*No thermal heterogeneity, 33km plateau & 100km transition

solid/molten Air Basalt (upper crust) Gabbro (lower crust) Newly formed crust Lithospheric mantle Asthenospheric mantle Mantle plume

2. Subduction Regime: Models ONLY with crustal thickness heterogeneity

Lithospheric materials A subducted slab is formed Slab falls into mantle accumulate more 1.93 Myr 2.12 Myr 2.16 Myr

*No thermal heterogeneity, 33km plateau & 100km transition

solid/molten Air Basalt (upper crust) Gabbro (lower crust) Newly formed crust Lithospheric mantle Asthenospheric mantle Mantle plume

3. Combination of regimes: Models with 40km plateau and transition width of 200 or 300 km

Results | Thermal heterogeneity

What is Thermal Heterogeneity:

 Different thermal profiles are taken from different places in x-direction

{ lowland, center(transition), highland(plateau) }

Thermal prole through the model lth2040m. (Fig. 3 from the Bachelor Thesis "The origin of asymmetrical coronae on Venus: insights from 3D thermomechanical Modelling" by Stadler D et al., 2019.) 43

Without Thermal Heterogeneity

* Both model have 40km plateau thickness & Transition Length 100km

With Thermal Heterogeneity

0.4584 Myr

1.6501 Myr

1.9071 Myr

Without Thermal Heterogeneity

1.5360 Myr

1.9827 Myr

* Both model have 40km plateau thickness & Transition Length 200km

With Thermal Heterogeneity

0.5064 Myr

1.6805 Myr

* Both model have 40km plateau thickness & Transition Length 200km

Results | Crustal Thicknesses Heterogeneity

Results | Crustal Thicknesses Heterogeneity

Crustal thickness difference ↑
→ Asymmetry ↑
Thickness difference affect coronae formation speed

Plateau Thickness

40km

solid/molten Air Basalt (upper crust) Gabbro (lower crust) Newly formed crust Lithospheric mantle Asthenospheric mantle

49

Results | Transition Section dimensions

1. Larger transition section \rightarrow less gradient in crustal thickness \rightarrow less asymmetric

2. All models are thermal heterogeneous models

Transition Length

Conclusions

From Coronae Data Analysis

 Asymmetry coronae are more likely located at places where there are local variations in crustal thickness

From Numerical Models

- Geodynamics Regime:
 - Plateau-sided dripping regime (thermal heterogeneity models)
 - Lowland-sided subduction regime (models with only crustal heterogeneity)
 - Alternating from dripping to subduction regime (models with 40km plateau and a transition length > 100km)
- Parameters of Variation:
 - Dominating factor: Thermal Heterogeneity
 - Larger gradient in thickness (buoyancy affects) induces greater asymmetry

Future Outlook

- > Quantify the results of numerical modelings with the gradient of crustal thickness
- > 3D composition visualization of models
- Investigate the relationship between asymmetric shape and stage of coronae formation

Acknowledgement

- I am very grateful to my supervisor Dr. Taras Gerya providing me an opportunity to work on this very interesting project and your advice as well as support through the project.
- I would also like to thank Anna Gülcher for all your guidance through the project as well as your patience, constructive advice, and many helpful discussions.
- Lastly, thanks to everyone who I met at ETH Zurich and all your help during my stay!

References

- Crane, L. (2021). NASA plans two Venus missions. New Scientiest.
- Koptev, A., Calais, E., Burov, E., Leroy, S., and Gerya, T. (2015). Dual continental rift systems generated by plume-lithosphere interaction. Nature Geoscience, 8(5):388-392.
- Nimmo, F. and McKenzie, D. (1998). Volcanism and Tectonics on Venus. Annual Review of Earth and Planetary Sciences, 26(1):23-51.
- Phillips, R. J. (1990). Convection-Driven Tectonics on Venus Free-air Dk4 + Psgo), where Ps is the density contrast at the surface and go is gravitational acceleration . At short wave-. 95:1301-1316.
- Piskorz, D., Elkins-Tanton, L. T., and Smrekar, S. E. (2014). Coronae formation on Venus via extension and lithospheric instability. Journal of Geophysical Research: Planets, 119(12):2568-2582.
- Schmeling, H. et al. A benchmark comparison of spontaneous subduction models—towards a free surface. Phys. Earth Planet. Inter. 171, 198–223 (2008).
- Smrekar, S. E. and Stofan, E. R. (1997). Corona Formation and Heat Loss on Venus by Coupled Upwelling and Delamination. Science, 277(5330):1289-1294.
- Solomon, S. C., Head, J. W., and Solomon, Sean C.; Head, J. W. (1982). Mechanisms for Lithospheric Heat Transport on Venus: Implications for Tectonic Style and Volcanism. Journal of Geophysical Research, 87(B11):9236-9246.
- Stadler, D., Gerya, T., and Gülcher, A (2019). The origin of asymmetrical coronae on Venus: insights from 3D thermomechanical modelling. Bachelor Thesis presented to the Earth Science Department of ETH Zürich Institute of Geophysics.
- Stofan, E. R., Bindschadler, D. L., Head, J. W., and Parmentier, E. M. (1991). Corona Structures on Venus: Models of Origin. Journal of Geophysical Research, 96946(25):920-933.
- Gerya and Yuen (2007). Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163(1-4):83-105.
- Gerya, T. V. (2014). Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth and Planetary Science Letters, 391:183-192.
- Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., and Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577):221-225.
- Gülcher, A. J., Gerya, T. V., Montési, L. G., & Munch, J. (2021). Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nature Geoscience, 13(8), 547-554.
- Wieczorek, M.A. (2015). Gravity and Topography of the Terrestrial Planets.

Thank you for your attention